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A Brief History of Computing 
and Computer Technologies

Let’s look at some of the key signposts in the 
development of computer technology.

Let’s briefly examine models of computation
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Early Computers
Jacquard Loom – 1746

Punched cards control weaving

Babbage’s Analytical Engine – 1834
Mechanical computer, punched-card data input
Mill is shown above
Arithmetic done in base 10.
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Early Computers

Hollerith electric tabulator/sorter
Punched-card sorter – collated 1890 census data 
that was forecast to take more than  10 years!
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Computers in the 20th Century
Turing machine

Two-way tape for data input and storage and finite-
state machine for reading/writing on tape.

Demonstrated impossibility of certain 
computations.

Control Unit
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20th Century Programmable
Computers

Atanasoff (1940) – linear eqn. solver, tube-based

Zuse’s Z3 (1941) – relay-based computer

Colossus (1943) – broke Enigma code, tube-based

Mark I (1944) – general-purpose, relay-based

ENIAC (1946) – general-purpose, tube-based

Thousands of “computers” existed in 1940s
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Computers in the 20th Century

The von Neumann model

Stored programs
Fetch-execute cycle

CPU
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The Computer Revolution 
Begins

Transistor invented at Bell Labs in 1947
Semiconductor switch – replaced vacuum tube.

By 1958 IBM was selling the 7070,  a transistor-
based computer.
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The Integrated Circuit

Integrated circuits invented independently in 
1959 by Jack Kilby and Robert Noyce

Transistors and wires combined on a chip through 
photolithography.

"What we didn't realize then was that the 
integrated circuit would reduce the cost of 
electronic functions by a factor of a million to one, 
nothing had ever done that for anything before" -
Jack Kilby



Lecture 02 Historical Context CSCI 2570  @John E Savage 10

Photolithography

This is the process of transferring a pattern to 
the surface of a chip using light.
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The VLSI Revolution
Intel 4004 CPU placed on a chip – 1969
By late 1970s very complicated chips were 
being assembled.
New challenges were encountered:

Specifying large chip designs simply
Simulating the electronics 
Laying out chips
Designing area efficient algorithms
Understanding tradeoffs through analysis
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VLSI Emerges as an Academic 
Area in Late 1970s

Introduction to VLSI published by Carver Mead 
and Lynn Conway in 1980.
Large chip designs now had to be specified

Hardware design languages invented
Complicated electronics needed to be simulated. 

Electronic simulators, such as Spice, developed
Gates and memory cells needed to be placed

Computer-aided design emerges
Area-efficient algorithms and theory

VLSI layouts and AT2 lower bounds developed
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The VLSI Model

Wires have width, gates have area.
The feature size of a VLSI technology is the size 
of the smallest feature (wire width/separation)

The area of gates is comparable to the 
square of feature size

The area occupied by wires often dominates the 
area of gates.
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The VLSI Crisis
Moore’s Law – doubling of # transistors/chip 
every 18 months – coming to an end.

Chip factories now cost $3-5 billion to 
construct!

Devices are so small that electronic models 
are no longer accurate; expensive redesign 
needed to meet systems requirements.



Lecture 02 Historical Context CSCI 2570  @John E Savage 15

What’s Next?
Nanotechnology of course!

Nanotechnology is a broad term that includes 
biological elements, molecular electronics, 
and quantum computing.

We give an overview of these technologies 
but focus primarily on the systems issues 
arising from nano-electronics.
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Emergence of Nanotechnology

Bucky balls (C60) discovered at Rice in 1985
Iijima discovered carbon nanotubes in 1991  
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Properties of 
Nanotechnologies

Methods of assembly are either very slow 
and precise or fast and non-deterministic.

Fast assembly is good at creating fairly 
regular structures.

There is hope that through DNA templating
non-regular structures will be possible
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The Crossbar – A Promising 
Nanotechnology

Two sets of parallel wires with switches at 
their intersections.

Crossbars are used as routers and memories 
today.
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Mechanical Crossbar Memory
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NRAM – Nonvolatile RAM 
Crossbars of Carbon Nanotubes

Electrostatic attraction used to make contacts, 
repulsion breaks them.
Nantero’s claims: (play the movie)

Permanently nonvolatile memory
Speed comparable to DRAM/SRAM
Density comparable to DRAM
Unlimited lifetime
Immune to soft errors
Will replace all existing forms of bulk memory!

No behavioral models yet presented
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Many Other Examples of 
Computational Nanotechnology

Crossbars realized with silicon nanowires
(NWs).

Many issues concerning controlling NWs with 
mesoscale wires (MWs).

Reliable computation with unreliable 
elements.
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Goals of the US National 
Nanotechnology Initiative

Maintain a world-class research and development 
program aimed at realizing the full potential of 
nanotechnology; 
Facilitate transfer of new technologies into products 
for economic growth, jobs, and other public benefit; 
Develop educational resources, a skilled workforce, 
and the supporting infrastructure and tools to 
advance nanotechnology; and, 
Support responsible development of 
nanotechnology.
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Introduction to Formalized 
Models of Computation

Logic circuits

Finite state machines (FSAs)
Deterministic and non-deterministic

Turing machines
Containing one or more potentially infinite tapes
Deterministic and non-deterministic

Languages

NP-complete problems.
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Logic Circuits
Feasibility of two-level logic leads to computation of 
binary functions.

Binary function f : Sn Ø Sm defined by table.

Can be realized with AND, OR, NOT
{NAND} is another “complete basis”

Challenging to find small circuits
Most functions f : Sn Ø S have circuit size O(2n/n)
Practical circuits have size O(n) to O(n3).
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Finite-State Machine (S,Q,δ,F)

Bounded number of states Q.
Input in S takes machine from 
a state to a state, δ: Q× SØ Q
Some states are final (in F).
“Accepted” strings move FSM 
from start state to a final state
The FSM “recognizes” the 
language of accepted strings.
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Languages

A language is a set of strings over an 
alphabet.

Examples:
{0, 00, 000, …}
{1, 01, 10, 100, 010, 001, 0001, …, 1101, … } 
(odd number of 1s)
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Limits on Language 
Acceptance

Are there languages that cannot be accepted 
by an FSM?

How about {0n1n}?

What is the property of FSMs that prevents 
them from “counting?”
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Nondeterministic Finite-State 
Machine (S,Q,δ,F)

Possibly more than one 
successor state, δ: Q× SØ 2Q

Addition of “hidden” input 
removes nondeterminism
Hidden inputs form certificate 
for acceptance of a string.
The languages recognized by 
NFSMs and FSMs are the 
same. Why?
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Circuits and FSMs

If an FSM executes T cycles, can it be 
simulated by a circuit?

δ Mem

Input
Output
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Turing Machines
A Turing machine is an FSM or NFSM control 
unit connected to one or more potentially 
infinite tapes.

Is the power of a TM enhanced by having 
more tapes?

Control Unit
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Language Acceptance by TMs
A string placed on the otherwise blank input 
tape of a TM is accepted if its control unit 
enters a final state.

This applies to both FSM and NFSM control units.

Can a Turing machine accept {0n1n}? How?

The time to accept a string on a TM is the 
number of steps taken by its control unit.

Time will depend on the number of tapes.
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The Classes P and NP

The class P is the set of languages accepted 
by deterministic TMs in polynomial time.

The class NP is the set of languages 
accepted by nondeterministic TMs in 
polynomial time.
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Reductions

Reducing to a previously solved problem.
Given a solution (program), use it to solve a new 
problem.
E.g. Use a squaring program to multiply integers.

If problem P is reduced to problem Q (the 
program for Q is used to solve P), can Q be 
easier than P?
If P is hard, can Q be easy?
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Polynomial-Time Reductions

Given problem P, we transform it using a 
polynomial time algorithm into problem Q.

If Q can be done in polynomial time, so can P

If P requires more than polynomial time, so 
does Q.
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The Class of NP-Complete 
Decision Problems

A problem Q is NP-complete if 
Q is in NP,and
Every problem in NP can be reduced to Q by a 
deterministic polynomial-time algorithm

Example – 3-Satisfiability
Instance: A set of clauses in three variables, e.g. 
(x2+x3+x5)
Yes Instance: All the clauses can be satisfied 
(made True) by some choices for the variables.
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NP-Complete Problems

Thousands of problems have been shown to 
be NP-complete.

If one of them can be shown to require more 
than polynomial time, all require more than 
polynomial time.

If one of them can be shown to be done in 
polynomial time, all of them can.


