
CSCI 2570
Introduction to

Nanocomputing

Historical Context
for Computing

John E Savage

Lecture 02 Historical Context CSCI 2570 @John E Savage 2

A Brief History of Computing
and Computer Technologies

Let’s look at some of the key signposts in the
development of computer technology.

Let’s briefly examine models of computation

Lecture 02 Historical Context CSCI 2570 @John E Savage 3

Early Computers
Jacquard Loom – 1746

Punched cards control weaving

Babbage’s Analytical Engine – 1834
Mechanical computer, punched-card data input
Mill is shown above
Arithmetic done in base 10.

Lecture 02 Historical Context CSCI 2570 @John E Savage 4

Early Computers

Hollerith electric tabulator/sorter
Punched-card sorter – collated 1890 census data
that was forecast to take more than 10 years!

Lecture 02 Historical Context CSCI 2570 @John E Savage 5

Computers in the 20th Century
Turing machine

Two-way tape for data input and storage and finite-
state machine for reading/writing on tape.

Demonstrated impossibility of certain
computations.

Control Unit

Lecture 02 Historical Context CSCI 2570 @John E Savage 6

20th Century Programmable
Computers

Atanasoff (1940) – linear eqn. solver, tube-based

Zuse’s Z3 (1941) – relay-based computer

Colossus (1943) – broke Enigma code, tube-based

Mark I (1944) – general-purpose, relay-based

ENIAC (1946) – general-purpose, tube-based

Thousands of “computers” existed in 1940s

Lecture 02 Historical Context CSCI 2570 @John E Savage 7

Computers in the 20th Century

The von Neumann model

Stored programs
Fetch-execute cycle

CPU

Lecture 02 Historical Context CSCI 2570 @John E Savage 8

The Computer Revolution
Begins

Transistor invented at Bell Labs in 1947
Semiconductor switch – replaced vacuum tube.

By 1958 IBM was selling the 7070, a transistor-
based computer.

Lecture 02 Historical Context CSCI 2570 @John E Savage 9

The Integrated Circuit

Integrated circuits invented independently in
1959 by Jack Kilby and Robert Noyce

Transistors and wires combined on a chip through
photolithography.

"What we didn't realize then was that the
integrated circuit would reduce the cost of
electronic functions by a factor of a million to one,
nothing had ever done that for anything before" -
Jack Kilby

Lecture 02 Historical Context CSCI 2570 @John E Savage 10

Photolithography

This is the process of transferring a pattern to
the surface of a chip using light.

Lecture 02 Historical Context CSCI 2570 @John E Savage 11

The VLSI Revolution
Intel 4004 CPU placed on a chip – 1969
By late 1970s very complicated chips were
being assembled.
New challenges were encountered:

Specifying large chip designs simply
Simulating the electronics
Laying out chips
Designing area efficient algorithms
Understanding tradeoffs through analysis

Lecture 02 Historical Context CSCI 2570 @John E Savage 12

VLSI Emerges as an Academic
Area in Late 1970s

Introduction to VLSI published by Carver Mead
and Lynn Conway in 1980.
Large chip designs now had to be specified

Hardware design languages invented
Complicated electronics needed to be simulated.

Electronic simulators, such as Spice, developed
Gates and memory cells needed to be placed

Computer-aided design emerges
Area-efficient algorithms and theory

VLSI layouts and AT2 lower bounds developed

Lecture 02 Historical Context CSCI 2570 @John E Savage 13

The VLSI Model

Wires have width, gates have area.
The feature size of a VLSI technology is the size
of the smallest feature (wire width/separation)

The area of gates is comparable to the
square of feature size

The area occupied by wires often dominates the
area of gates.

Lecture 02 Historical Context CSCI 2570 @John E Savage 14

The VLSI Crisis
Moore’s Law – doubling of # transistors/chip
every 18 months – coming to an end.

Chip factories now cost $3-5 billion to
construct!

Devices are so small that electronic models
are no longer accurate; expensive redesign
needed to meet systems requirements.

Lecture 02 Historical Context CSCI 2570 @John E Savage 15

What’s Next?
Nanotechnology of course!

Nanotechnology is a broad term that includes
biological elements, molecular electronics,
and quantum computing.

We give an overview of these technologies
but focus primarily on the systems issues
arising from nano-electronics.

Lecture 02 Historical Context CSCI 2570 @John E Savage 16

Emergence of Nanotechnology

Bucky balls (C60) discovered at Rice in 1985
Iijima discovered carbon nanotubes in 1991

Lecture 02 Historical Context CSCI 2570 @John E Savage 17

Properties of
Nanotechnologies

Methods of assembly are either very slow
and precise or fast and non-deterministic.

Fast assembly is good at creating fairly
regular structures.

There is hope that through DNA templating
non-regular structures will be possible

Lecture 02 Historical Context CSCI 2570 @John E Savage 18

The Crossbar – A Promising
Nanotechnology

Two sets of parallel wires with switches at
their intersections.

Crossbars are used as routers and memories
today.

Lecture 02 Historical Context CSCI 2570 @John E Savage 19

Mechanical Crossbar Memory

Lecture 02 Historical Context CSCI 2570 @John E Savage 20

NRAM – Nonvolatile RAM
Crossbars of Carbon Nanotubes

Electrostatic attraction used to make contacts,
repulsion breaks them.
Nantero’s claims: (play the movie)

Permanently nonvolatile memory
Speed comparable to DRAM/SRAM
Density comparable to DRAM
Unlimited lifetime
Immune to soft errors
Will replace all existing forms of bulk memory!

No behavioral models yet presented

Lecture 02 Historical Context CSCI 2570 @John E Savage 21

Many Other Examples of
Computational Nanotechnology

Crossbars realized with silicon nanowires
(NWs).

Many issues concerning controlling NWs with
mesoscale wires (MWs).

Reliable computation with unreliable
elements.

Lecture 02 Historical Context CSCI 2570 @John E Savage 22

Goals of the US National
Nanotechnology Initiative

Maintain a world-class research and development
program aimed at realizing the full potential of
nanotechnology;
Facilitate transfer of new technologies into products
for economic growth, jobs, and other public benefit;
Develop educational resources, a skilled workforce,
and the supporting infrastructure and tools to
advance nanotechnology; and,
Support responsible development of
nanotechnology.

Lecture 02 Historical Context CSCI 2570 @John E Savage 23

Introduction to Formalized
Models of Computation

Logic circuits

Finite state machines (FSAs)
Deterministic and non-deterministic

Turing machines
Containing one or more potentially infinite tapes
Deterministic and non-deterministic

Languages

NP-complete problems.

Lecture 02 Historical Context CSCI 2570 @John E Savage 24

Logic Circuits
Feasibility of two-level logic leads to computation of
binary functions.

Binary function f : Sn Ø Sm defined by table.

Can be realized with AND, OR, NOT
{NAND} is another “complete basis”

Challenging to find small circuits
Most functions f : Sn Ø S have circuit size O(2n/n)
Practical circuits have size O(n) to O(n3).

Lecture 02 Historical Context CSCI 2570 @John E Savage 25

Finite-State Machine (S,Q,δ,F)

Bounded number of states Q.
Input in S takes machine from
a state to a state, δ: Q× SØ Q
Some states are final (in F).
“Accepted” strings move FSM
from start state to a final state
The FSM “recognizes” the
language of accepted strings.

1

q0
1

0

0 q1

Start
state

Final
state

Lecture 02 Historical Context CSCI 2570 @John E Savage 26

Languages

A language is a set of strings over an
alphabet.

Examples:
{0, 00, 000, …}
{1, 01, 10, 100, 010, 001, 0001, …, 1101, … }
(odd number of 1s)

Lecture 02 Historical Context CSCI 2570 @John E Savage 27

Limits on Language
Acceptance

Are there languages that cannot be accepted
by an FSM?

How about {0n1n}?

What is the property of FSMs that prevents
them from “counting?”

Lecture 02 Historical Context CSCI 2570 @John E Savage 28

Nondeterministic Finite-State
Machine (S,Q,δ,F)

Possibly more than one
successor state, δ: Q× SØ 2Q

Addition of “hidden” input
removes nondeterminism
Hidden inputs form certificate
for acceptance of a string.
The languages recognized by
NFSMs and FSMs are the
same. Why?

1

q0
1

0

0,1 q1

Start
state

Final
state

Lecture 02 Historical Context CSCI 2570 @John E Savage 29

Circuits and FSMs

If an FSM executes T cycles, can it be
simulated by a circuit?

δ Mem

Input
Output

δ δ δq0

x2

y1

q1 qT-1

qT

x1 xT

y2 yT

…

Lecture 02 Historical Context CSCI 2570 @John E Savage 30

Turing Machines
A Turing machine is an FSM or NFSM control
unit connected to one or more potentially
infinite tapes.

Is the power of a TM enhanced by having
more tapes?

Control Unit

Lecture 02 Historical Context CSCI 2570 @John E Savage 31

Language Acceptance by TMs
A string placed on the otherwise blank input
tape of a TM is accepted if its control unit
enters a final state.

This applies to both FSM and NFSM control units.

Can a Turing machine accept {0n1n}? How?

The time to accept a string on a TM is the
number of steps taken by its control unit.

Time will depend on the number of tapes.

Lecture 02 Historical Context CSCI 2570 @John E Savage 32

The Classes P and NP

The class P is the set of languages accepted
by deterministic TMs in polynomial time.

The class NP is the set of languages
accepted by nondeterministic TMs in
polynomial time.

Lecture 02 Historical Context CSCI 2570 @John E Savage 33

Reductions

Reducing to a previously solved problem.
Given a solution (program), use it to solve a new
problem.
E.g. Use a squaring program to multiply integers.

If problem P is reduced to problem Q (the
program for Q is used to solve P), can Q be
easier than P?
If P is hard, can Q be easy?

Lecture 02 Historical Context CSCI 2570 @John E Savage 34

Polynomial-Time Reductions

Given problem P, we transform it using a
polynomial time algorithm into problem Q.

If Q can be done in polynomial time, so can P

If P requires more than polynomial time, so
does Q.

Lecture 02 Historical Context CSCI 2570 @John E Savage 35

The Class of NP-Complete
Decision Problems

A problem Q is NP-complete if
Q is in NP,and
Every problem in NP can be reduced to Q by a
deterministic polynomial-time algorithm

Example – 3-Satisfiability
Instance: A set of clauses in three variables, e.g.
(x2+x3+x5)
Yes Instance: All the clauses can be satisfied
(made True) by some choices for the variables.

Lecture 02 Historical Context CSCI 2570 @John E Savage 36

NP-Complete Problems

Thousands of problems have been shown to
be NP-complete.

If one of them can be shown to require more
than polynomial time, all require more than
polynomial time.

If one of them can be shown to be done in
polynomial time, all of them can.

